Completing the square involves taking a quadratic relation of the form $y=a x^{2}+b x+c$ into vertex form $y=a(x-h)^{2}+k$

Ex. 3 Write each of the following in vertex form.

$$
\begin{aligned}
& \text { a) } y=5 x^{2}-30 x+12 \\
& \text { b) } \\
& y=5\left(x^{2}-6 x+9-9\right)+12 \\
& \sigma_{\frac{6}{2}}=3 v^{3} 3^{2} \\
& y=5\left(x^{2}-6 x+9\right)^{(-9)(5)}-45+12 \\
& \begin{array}{l}
y=-3 x^{2}-12 x+5 \\
y=-3\left(x^{2}+4 x+4-4\right)+5 \\
\left.\left(\frac{4}{2}\right)^{2}\right)
\end{array} \\
& y=-3\left(x^{2}+4 x+4\right)+12+5 \\
& y=-3(x+2)^{2}+17 \\
& y=5(x-3)^{2}-33
\end{aligned}
$$

c)

$$
\begin{aligned}
& y=-2 x^{2}+16 x-3 \\
& y=-2\left(x^{2}-8 x\right. \\
& y=-2\left(x^{2}-8 x+16-16\right)-3 \\
& y=-2\left(x^{2}-8 x+16\right)+32-3 \\
& y=-2(x-4)^{2}+29
\end{aligned}
$$

Ex. 4 Determine the maximum or minimum point of each parabola.

$$
\begin{aligned}
& \text { a. } y=2 x^{2}+8 x+7 \\
& y=2\left(x^{2}+4 x+4-4\right)+7 \\
& y=2\left(x^{2}+4 x+4\right)-8+7 \\
& y=2(x+2)^{2}-1 \\
& \therefore \text { Min is }(-2,-1) \\
& \text { ? a>0 } \\
& \text { c. } y=-3 x^{2}-12 x+5 \\
& y=-3\left(x^{2}+4 x+4-4\right)+5 \\
& y=-3\left(x^{2}+4 x+4\right)+12+5 \\
& y=-3(x+2)^{2}+17 \\
& \therefore \text { Max is }(-2,17) \\
& ? \text { acc }
\end{aligned}
$$

e. $y=-4 x^{2}+24 x-3$

$$
\begin{aligned}
& y=-4\left(x^{2}-6 x+9-9\right)-3 \\
& y=-4\left(x^{2}-6 x+9\right)+36-3 \\
& y=-4(x-3)^{2}+33
\end{aligned}
$$

$$
\therefore \text { Max is }(3,33)
$$

$$
\text { b. } \begin{aligned}
& y=x^{2}-14 x+20 \\
& y=x^{2}-14 x+49-49+20 \\
& y=(x-7)^{2}-29 \\
& \therefore \text { Min is }(7,-29)
\end{aligned}
$$

Ex. 1 The path of a basketball shot can be modelled by the equation $h=-0.09 d^{2}+0.9 d+2$ where h is the height of the basketball in metres and d is the horizontal distance of the ball from the player in metres.

a. What is the maximum height reached by the ball?

$$
\begin{aligned}
& \begin{aligned}
& h=-0.09 d^{2}+0.9 d+2 \\
& h=-0.09\left(d^{2}-10 d+25-25\right)+2 \\
& h=-0.09\left(d^{2}-10 d+25\right)+2.25+2 \\
& h=-0.09(d-5)^{2}+4.25 \\
& \text { Vertex }(5.4 .25) \quad \therefore \text { Maximum height } \\
& \quad \text { Max height } \quad \text { was } 4.25 \mathrm{~m}
\end{aligned} \\
& \quad \text { and er }
\end{aligned}
$$

b. How far is the ball from the player when it reaches maximum height?

The ball is 5 m from the player.

