11. Write an equation for the larger circle.
12. Reflect Write an equation for the circle with centre $(0,0)$ and radius r. Then, use this equation to write an expression for the radius.

Example 1 Equation for a Circle

Find an equation for the circle with centre $(0,0)$ and radius 4.

Solution

The distance from the origin to any point $\mathrm{P}(x, y)$ on the circle is the length of the radius. So,
$\mathrm{OP}=4$
The distance formula also gives an expression for the length of OP:

$$
\begin{aligned}
\mathrm{OP} & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(x-0)^{2}+(y-0)^{2}} \\
& =\sqrt{x^{2}+y^{2}}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\sqrt{x^{2}+y^{2}} & =4 \\
x^{2}+y^{2} & =16
\end{aligned}
$$

An equation for the circle is $x^{2}+y^{2}=16$.

Example 2 Determine Whether a Point Lies Within a Circle

a) Determine an equation and the radius for the circle that has its centre at the origin and passes through the point $\mathrm{A}(6,-8)$.
b) Is the point $\mathrm{B}(-5,9)$ inside this circle?

Solution

a) An equation for a circle centred at the origin has the form $x^{2}+y^{2}=r^{2}$.

Substitute the coordinates of the point $(6,-8)$ into the equation for the circle.
$x^{2}+y^{2}=r^{2}$
$6^{2}+(-8)^{2}=r^{2}$
$36+64=r^{2}$
$100=r^{2}$
$\sqrt{100}=\sqrt{r^{2}}$
$10=r$

The point $(6,-8)$ lies on this circle, so the coordinates of the point must satisfy the equation of the circle.

An equation for the circle is $x^{2}+y^{2}=100$, and the radius of the circle is 10 .
b) Consider a circle with its centre at the origin and with point $\mathrm{B}(-5,9)$ on the circumference. Let r_{1} be the radius of this circle. To find the length of the radius, substitute the coordinates of point B into the formula for the radius of a circle centred at the origin.

$$
r_{1}=\sqrt{x^{2}+y^{2}}
$$

$=\sqrt{(-5)^{2}+9^{2}}$

$=\sqrt{25+81}$
$=\sqrt{106}$
$\doteq 10.3$
Since $r_{1}>10$, point B lies outside the circle defined by $x^{2}+y^{2}=100$.
If $r_{1}>r$, then $r_{1}{ }^{2}>r^{2}$. So, the inequality $x^{2}+y^{2}>r^{2}$ defines the region outside the circle with centre (0,0) and radius r.

