3.4 Graphing $y = a(x - h)^2 + k$

Steps:

- 1. Plot the vertex.
- 2. Up or down?
- 3. Count over & up/downs to get 4 more points.
- 4. Draw a smooth curve.

if a > 1, then there is a stretch by a factor of a

if 0 < a < 1, then there is a compression by a factor of

values that

Ex. 1 Complete the table.

Ex. 1 Complete the table.				y can take	
Equation	Direction of Opening UP/DOUN	Vertex	Equation of Axis of Symmetry	Stretch Factor	Range
$y=3(x-5)^2+9$	ÚP	(5,9)	x=5	M	y≥9
$y = -\frac{3}{4}(x+4)^2 - 7$	DOMN	(-4,-7)	x=-4	M[4 1	y < -7
$y = -2x^2 - 3$	DOWN	(0,-3)	$\chi = 0$	N	y 4-3
y=7 (x+2)2+5	Up	(-2,5)	x=-2	7	y25
y=-4(x-3)2-2	Down	(3,-2)	x = 3	-4	y ≤ -2

Ex. 2 Write an equation for each parabola.

Ex. 3 Graph. (show at least 5 points)

a)
$$y = (x-4)^2 - 3$$

b)
$$y=2(x+5)^2+1$$

c)
$$y = -3(x+2)^2 + 8$$

d)
$$y = \frac{1}{4}(x-3)^2 - 2$$

e)
$$y = -(x+1)^2$$

f)
$$y = -\frac{1}{2}x^2 + 6$$

Your Turn --> FBUHL!

pg. 185 #C3, 1-7

