3.4 Graphing $y=a(x-h)^{2}+k$

Steps:

1. Plot the vertex.
2. Up or down?
3. Count over \& up/downs to get 4 more points.
4. Draw a smooth curve.

if $a>1$, then there is a stretch by a factor of a

if $0<a<1$, then there is a compression by a factor of $\frac{1}{a}$
from the vertex:
$\longleftrightarrow 1 \quad 1 \quad 1 \times$ a
$\longleftrightarrow 2$

Ex. 1 Complete the table.

$\left\{\begin{array}{l} \text { values tha } \\ y \text { y can take } \end{array}\right.$	
Stretch Factor	${ }_{\text {Range }}$
3	$y \geq 9$
$-\frac{3}{4}$	
-2	$y \leq-3$
7	$y \geq 5$
-4	$y \leq-2$

3.4 Graphing $y=a(x-h)^{\wedge} 2+k . n o t e b o o k$

Ex. $2 \quad$ Write an equation for each parabola.

$$
y=2(x-4)^{2}-5
$$

$v(-4,0)$

$$
\begin{aligned}
y & =-(x+4)^{2}+0 \\
& =-(x+4)^{2}
\end{aligned}
$$

$$
y=\frac{1}{3}(x+2)^{2}-4
$$

$$
y=-\frac{1}{2} x^{2}+7
$$

Ex. 3 Graph. (show at least 5 points)
a) $y=(x-4)^{2}-3$

b) $y=2(x+5)^{2}+1$

c) $y=-3(x+2)^{2}+8$

e) $y=-(x+1)^{2}$

d) $y=\frac{1}{4}(x-3)^{2}-2$

f) $y=-\frac{1}{2} x^{2}+6$

Your Turn --> FBUHL!
 pg. 185 \#C3, 1-7

