1.6 Solving by Elimination

What were the big ideas from yesterday's class?

- An equivalent linear system is formed by multiplying/dividing any of the equations by a constant.
- An equivalent linear system is formed by adding or subtracting the equations.

Eliminate means to remove or get rid of.
What do you think we would like to eliminate?
An unknown!
Consider the following system:

$$
\begin{aligned}
x-y & =1 \\
+3 x+y & =11 \\
\hline 4 x & =12 \\
x & =3
\end{aligned}
$$

What happens when we add the equations?
whir Signs were different Coefficients are same
To add or to subtract?
Think...

$$
\square^{y} \begin{array}{llll}
y \\
\frac{y}{0 y} & \pm^{-y} & A^{y} & \begin{array}{c}
y \\
0 y
\end{array}
\end{array} \begin{aligned}
& -y \\
& 0 y
\end{aligned} \quad \frac{-y}{0 y}
$$

Opposite signs --> add Same signs --> subtract

Examples: Solve by elimination.
a. $x-y=1 \quad$ (1)

$$
3 x+y=11 \text { (2) }
$$

(1) + (2)

$$
\begin{aligned}
4 x & =12 \\
x & =3
\end{aligned}
$$

$$
\therefore \operatorname{Sol}\left(\frac{n}{}(3,2)\right.
$$

Sub $x=3$ into (1)
(3) $-y=1$
$-y=-2$
$y=2$

METHOD 2 - THE ELIMINATION METHOD

1. Multiply one or both equations by a constant so that the coefficients of either x or y are the same in both equations (sign does not matter).
2. Add or subtract the equations to eliminate one variable.
3. Solve the remaining equation.
4. Substitute the solved value into one of the original equations to determine the value of the other variable.
5. Write a conclusion.
6. Check (formally if asked, otherwise mentally.
b.

$$
\begin{aligned}
x+3 y & =2 \\
2 x+5 y & =3
\end{aligned}
$$

(1) $x 2 \quad 2 x+6 y=4$
(2) (1) $\quad \begin{aligned} 2 x+5 y & =3 \\ y & =1\end{aligned}$

Sub $y=1$ into (1)

$$
\begin{aligned}
& x+3(1)=2 \\
& x=-1 \\
& \therefore S_{0}\left(\frac{n}{}(-1,1)\right.
\end{aligned}
$$

c.

$$
\begin{aligned}
5 x-3 y & =9 \\
2 x-5 y & =-4
\end{aligned}
$$

(1) $\times 2$
(2) $\times 5$
(1)-2

$$
\begin{aligned}
10 x-6 y & =18 \\
10 x-25 y & =-20 \\
19 y & =38 \\
y & =2
\end{aligned}
$$

Sub $y=2$ into 2

$$
\begin{gathered}
2 x-5(2)=-4 \\
2 x=-4+10 \\
2 x=6 \\
x=3 \\
\therefore \text { Soln }(3,2)
\end{gathered}
$$

d. $2 x+3 y=8$ (1)
(1) $\times 3 \quad 6 x+9 y=24$
(2) $\times 2$
(1)-(2)

Sub into (1)

$$
\begin{aligned}
2 x+3\left(\frac{20}{19}\right) & =8 \\
2 x+\frac{60}{19} & =8 \\
2 x & =8-\frac{60}{19}
\end{aligned}
$$

$\left.\frac{\text { Approach } 1}{(}\right) \times 19$

$$
38 x=152-60
$$

$$
38 r=92
$$

$$
x=\frac{92}{38}
$$

$$
=\frac{46}{19}
$$

Approach 2

$$
\begin{aligned}
2 x & =8-\frac{60}{19} \\
2 x & =\frac{152}{19}-\frac{60}{19} \\
2 x & =\frac{92}{19} \\
x & =\frac{92}{38} \\
& =\frac{46}{19} \\
\therefore \text { Sol } & =\left(\frac{46}{19}, \frac{20}{19}\right)
\end{aligned}
$$

e. $3 m=-1-4 n$

Heed sam

$$
\Rightarrow \begin{aligned}
& 5 n=4 m+22 \\
& 3 m=-1-4 n \\
& -4 m=22-5 n
\end{aligned}
$$

(1) $\times 4 \quad 12 m=-4-16 n$
$\left(\begin{array}{l}(1)+3-12 m=66-15 n \\ 0=62-31 n\end{array}\right.$

$$
\begin{gathered}
3 \ln =62 \\
n=2
\end{gathered}
$$

Sulo into (1)

$$
\begin{aligned}
& 3 m=-1-4(2) \\
& 3 m=-9 \\
& m=-3 \\
& \therefore \text { Sol } n \\
& m=-3 \\
& n=2
\end{aligned}
$$

p. 40 \# 2d,3d,5d,7cd,10,12c,13,18,19b

