1.6 Solving by Elimination

What were the big ideas from yesterday's class?

• An equivalent linear system is formed by multiplying/dividing any of the equations by a constant.

• An equivalent linear system is formed by adding or subtracting the equations.

Eliminate means to <u>remove</u> or get rid of.
 What do you think we would like to eliminate?
 An unknown!

Consider the following system:

Examples: Solve by elimination.

METHOD 2 - THE ELIMINATION METHOD

- 1. Multiply one or both equations by a constant so that the coefficients of either *x* or *y* are the same in both equations (sign does not matter).
- 2. Add or subtract the equations to *eliminate* one variable.
- 3. Solve the remaining equation.
- 4. Substitute the solved value into one of the original equations to determine the value of the other variable.
- 5. Write a conclusion.
- 6. Check (formally if asked, otherwise mentally.

b.
$$x + 3y = 2$$

 $2x + 5y = 3$
() $x = 2$
() $x = 2$
() $x = 2$
() $x = 2$
() $x = -3$
() $x = -3$
() $x = -3$
() $y = 1$
() $y = -1$
() $x = -1$
() $x = -1$
() $x = -1$
() $x = -1$

c.
$$5x - 3y = 9$$
 (1)
 $2x - 5y = -4$ (2)
(1) $\times 2$
 $3x - 5$
 $10x - 6y = 18$
 $10x - 25y = -20$
 $19y = 38$
 $y = 2$
 $505 y = 2$ into (2)
 $2x - 5(2) = -4$
 $2x = -4 + 10$
 $2x = 6$
 $x = 3$
 $\therefore 50|^{12}(3, 2)$

3

d.
$$2x + 3y = 8$$
 (b)
 $3x - 5y = 2$ (c)
(D × 3 $6x + 9y = 244$
(D × 2 $6x - 10y = 44$
(D × 2 $6x - 10y = 44$
(D × 2 $17y = 200$
 $3m = -1 - 4m$ (D $-4m = 22 - 5n$ (c)
(D × 4 $12m = -4 - 16n$
(D × 3 $-12m = 66 - 15n$
(D × 9 $-3m = -4$
(D × 19 $3m = -1 - 4(2)$
 $3m = -3$
.: Sol[1
Approach 1
(D × 19
 $38x = 152 - 60$
 $m = -3$
.: Sol[1
Approach 2
 $2x = \frac{72}{19} - \frac{60}{19}$
 $2x = \frac{72}{19} - \frac{60}{19}$
 $x = \frac{72}{38}$
 $= \frac{46}{19}$
.: Sol[1 - ($\frac{46}{19}, \frac{80}{19}$)

Homework

The Eliminator

... solving systems by eliminating one variable at a time!

p.40 # 2d,3d,5d,7cd,10,12c,13,18,19b