1.9 Problem Solving Day 3: Distance, Rate, Time

$$
\begin{aligned}
& \text { Speed }=\frac{\text { Distance }}{\text { Time }} \\
& \text { Distance }=\text { Speed } \times \text { Time } \\
& \text { Time }=\frac{\text { Distance }}{\text { Speed }}
\end{aligned}
$$

Let u be time underwater Let s be time on the surface
(1) $u+s=12.5$
(2) $10 u+16 s=160$
$10 \times$ (1) $10 u+10 s=125$
(2) $10 u+16 s=160$
(1)-(2)

$$
\begin{array}{r}
-6 s=-35 \\
s=\frac{-35}{-6} \\
s=5 \frac{5}{6} \\
5 \text { hrs } 50 \mathrm{~min}
\end{array}
$$

$$
\left\{\begin{aligned}
& s u b s=\frac{35}{6} \\
& u+\frac{35}{6}=12.5 \\
& 6 u+35=75 \\
& 6 u=40 \\
& u=\frac{40}{6} \\
& u=\frac{20}{3} \\
& u=6 \frac{2}{3} \\
& 6 r^{\frac{2}{3}} \times 50 \\
& 40 \text { min }
\end{aligned}\right.
$$

\therefore The sub spent
5 hrs 50 min . underwater 6 hrs 40 min on the surface
2. A helicopter pilot finds that with a tail wind a 120 km distance takes 45 minutes. The return trip, into the wind, takes one hour. Determine the rate of the helicopter in still air and the rate of the wind.

let $x=$ rate of helicopter and $y=$ rate of wind
(1) $120=(x+y)\left(\frac{3}{4}\right)^{\longleftarrow} \frac{3}{4} h r=45$ minutes
(2) $120=(x-y)(1)$
(1) $120=\frac{3}{4} x+\frac{3}{4} y$
(2) $120+y=x$

Sub $x=120+y$ into (1)

$$
\begin{gathered}
x=120+y \text { into (1) } \\
120=\frac{3}{4}(120+y)+\frac{3}{4} y \\
480=3(120+y)+3 y \\
480=360+3 y+3 y \\
120=6 y \\
20=y
\end{gathered} \quad \begin{array}{r}
\text { Sub } y=20 \text { into (2) } \\
120+20=x \\
140=x
\end{array} \quad \begin{array}{r}
\text { the helicopter's } \\
\begin{array}{c}
\text { speed was } 140 \\
\text { The wind was } \\
20 \mathrm{~km} / \mathrm{has}
\end{array}
\end{array}
$$

3. A plane left Montreal for Calgary, a distance of 3000 km , travelling at $550 \mathrm{~km} / \mathrm{h}$. At the same time, a plane left Calgary for Montreal travelling at $450 \mathrm{~km} / \mathrm{h}$. How long after take-off did the planes pass each other?

Sub (1) into (2)

$$
x=3
$$

4. A freight train and a passenger train are in stations 540 km apart. The freight train leaves the station at noon travelling at $60 \mathrm{~km} / \mathrm{h}$ in the direction of the passenger train. One hour later, the passenger train leaves and heads towards the freight train at $90 \mathrm{~km} / \mathrm{h}$. At what time will the two trains meet?

Let x be time for freight
Let y be time for passenger
(1) $x=y+1$
(2) $540=60 x+90 y$

Sub (1) into (2)

$$
\begin{aligned}
& \begin{array}{l}
540=60(y+1)+90 y \quad \text { Sub into (1) } \\
540=60 y(1)
\end{array} \\
& 540=60 y+60+90 y \\
& 480=150 y \\
& \frac{480}{150}=y \\
& x=\frac{16}{5}+\frac{5}{5} \\
& x=\frac{21}{5} \\
& \downarrow \\
& 3 \mathrm{hr} 12 \mathrm{~min} \\
& x=\frac{16}{5}+1 \\
& 4 \mathrm{hr} 12 \mathrm{~min}
\end{aligned}
$$

\therefore They met at $4: 12 \mathrm{pm}$

Math phobic's nightmare

