

1. Complete the square for the quadratic relation $y=0.2 b^{2}-10 b+650$.
2. Solve. Express answers as exact values.
a) $2 x^{2}-8 x=0$
b) $4(2 x-1)^{2}=36$
c) $5 x^{2}-6 x-2=0$

5.6 Quadratic Formula Problems

Last class we saw...
solution x-intercept

Ex. 2 Solve each of the following using the quadratic formula.

$$
\begin{array}{l|c}
\begin{array}{c}
2 x^{2}-5 x-1=0 \\
x=\frac{5 \pm \sqrt{25-4(2)(-1)}}{2(2)} \\
4
\end{array} & x=\frac{30 \pm \sqrt{900-4(1)(225)}}{2(1)} \\
x=\frac{30 \pm \sqrt{0}}{2}
\end{array}\left|\begin{array}{c}
3 x^{2}+2 x+15=0 \\
2
\end{array}\right| x=\frac{-2 \pm \sqrt{4-4(3)(15)}}{2(3)}
$$

Which part of the quadratic formula determines the number of zeros?

desmos

In $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
: the \# under the $\sqrt{ }$ is the discriminant, it determines whether there will be 2,1 or 0 solutions.

- If $b^{2}-4 a c>0$, then the quadratic equation has 2 real roots.
- If $b^{2}-4 a c=0$, then the quadratic equation has 1 real root.
- If $b^{2}-4 a c<0$, then the quadratic equation has no real roots.

Ex. 1 Determine the discriminant, then state the number of roots (solutions/zeroes).
a) $0=3 x^{2}+7 x+9$
b) $0=5 x^{2}-8 x-3$
$\begin{aligned} b^{2}-4 a c & =7^{2}-4(3)(9) \\ & =49-108 \\ & =-59\end{aligned}$

$$
\begin{aligned}
b^{2} & -4 a c \\
& =(-8)^{2}-4(5)(-3) \\
& =64+60 \\
& =124
\end{aligned}
$$

\therefore No real roots

$$
\therefore 2 \text { real roots }
$$

Ex. 2 A cliff diver in Acapulco, Mexico, dives from about 17 m above the water. The diver's height above the water h, in meters, after t seconds is modelled by $h=-4.9 t^{2}+1.5 t+17$. How long is the diver in the air?

$$
\begin{aligned}
& \therefore \text { let } h=0 \\
& 0=-4.9 t^{2}+1.5 t+17
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-1.5 \pm \sqrt{(1.5)^{2}-4(-4.9)(17)}}{2(-4.9)} \\
& x=\frac{-1.5 \pm \sqrt{335.45}}{-9.8} \\
& t \quad \downarrow \\
& t=-1.72 \quad t \pm 2.02 \\
& \text { Invalid }
\end{aligned}
$$

\therefore He was in the air for approx.

$$
2.0 \text { seconds. }
$$

Ex. 3 The height of an object thrown downward off the Peace tower is given by $h=-5 t^{2}-5 t+90$, where h is the height above the ground in metres and t is the time in seconds. How long does it take for the object to hit the ground?

When it tits the ground, $h=0$

$-5 t^{2}-5 t+90=0$
$-5\left(t^{2}+t-18\right)=0$

$$
a=1
$$

$$
b=1
$$

$$
c=-18
$$

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-1 \pm \sqrt{1-4(1)(-18)}}{2(1)} \\
& =\frac{-1 \pm \sqrt{73}}{2} \\
t & =4.77
\end{aligned}
$$

Invalid
\therefore The object is in the air for approx. 4 seconds.

Ex. 4 A ball is thrown up into the air. Its height h, in metres, after t seconds is $\mathrm{h}=-4.9 \mathrm{t}^{2}+38 \mathrm{t}+1.75$.
a) What is the height of the ball after 3 s ?
b) For what length of time is the ball above 50 m ?
c) When does the ball strike the ground?
a) Sub in $t=3$

$$
h=-4.9(3)^{2}+38(3)+1.75
$$

$$
=71.65
$$

\therefore After 3 s , the ball's dight is 71.65 m
b) $t=$? when $h=50$

$$
\begin{aligned}
& 50=-4.9 t^{2}+38 t+1.75 \\
& 0=-4.9 t^{2}+38 t-48.25 \\
& t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-38 \pm \sqrt{38^{2}-4(-4.9)(-48.25)}}{2(-4.9)} \\
& t=1.6 \quad \text { or } t=6.2 \\
& \Delta t=6.2-1.6 \\
& \\
& =4.6
\end{aligned}
$$

\therefore It was at or above 50 m for 4.65
c)

$$
\begin{aligned}
& t=? \quad h=0 \\
& 0=-4.9 t^{2}+38 t+1.75
\end{aligned}
$$

Answer $t=7.8$
FBUHL!

