MPM2DU Mock Exam

Chapter 1

1. Solve $\left\{\begin{aligned} \frac{3}{2} x-5 y & =8 \\ 2 x+y & =3\end{aligned}\right.$ by substitution.
2. Solve $\left\{\begin{array}{l}5 x-3 y=9 \\ 2 x-5 y=-4\end{array}\right.$ by elimination
3. A hockey player is offered two options for a contract: either a base salary of $\$ 50000$ and $\$ 1$ 000 per goal, or a base salary of $\$ 40000$ and $\$ 1500$ per goal. How many goals must he score in order to make the same amount of money for each contract?

Chapter 2

All of the questions are based on the triangle whose vertices are $A(3,5), B(-2,0), C(2,-4)$.

1. Calculate the exact length of $A C$.
2. Determine the coordinates of the midpoint of $A B$.
3. What is the equation of the circle centred on the origin that passes through C ?
4. Is point A inside, outside or on the circle in question \#3?
5. $C(4,-3)$ is the midpoint of a line segment with endpoints $A(7,5)$ and B. Determine the coordinates of B ?
6. Using the information below, find the length and the coordinates of the shortest distance to get to the existing road.

Example 1 Find the Shortest Route

A ranger cabin is to be built in a flat wooded area near the straight road that connects the two campgrounds in a park. A new side road will connect the cabin to the campground road. On the park map, the campgrounds have coordinates $\mathrm{A}(2.0,8.5)$ and $B(10.0,4.5)$, while the site for the cabin is at $R(6.0,1.5)$. Each unit on the map grid represents 500 m .

Chapter 5

1. Expand and simplify:
a) $(x+3)^{2} \quad$ b) $(2 x-5)^{2}$
c) $(4 x+y)^{2}$
d) $(3 x+2)(3 x-2)$
2. Factor:
a) $4 a^{2}+6 a b+12 a b c$
b) $x y+12+4 x+3 y$
3. Factor:
a) $x^{2}-3 x-4$
b) $10 x^{2}-17 x+3$
c) $8 d^{2}+18 d+12$

Chapter 6

1. Complete the square. Determine direction of opening, max or min, AOS, and vertex
a) $y=x^{2}-14 x+20$
b) $y=-4 x^{2}+24 x-3$
2. Solve by factoring
a) $x^{2}+4 x-5=0$
b) $10 x^{2}+19 x+6=0$
3. A ball is thrown up into the air, its height h, in metres, after t seconds is $h=-4.9 t^{2}+38 t+$ 1.75 .
a) What is the height of the ball after 3 s
b) For what length of time is the ball above 50 m ?
c) When does the ball strike the ground?
d)
4. Mr. Singh jumps off a building that is 17 m above the ground. The height above the ground is h, in metres, after t seconds is modelled by $h=-4.9 t^{2}+1.5 t+17$. How long is Mr. Singh in the air?

Chapter 7

1. Solve for the unknown angles

2. Amanda places a mirror on the ground 7.5 m in front of the base of a flagpole. If she stands back 1.2 m from the mirror, she can see the reflection of the top of the pole in the mirror. If Amanda is 1.6 m tall, how tall is the flagpole?
3.From the edge of the roof of a building, the angle of depression of the base of a neighboring building is 28°. If the two buildings are 50 m apart, how tall is the building from which the angle was measured?
3. A helicopter is hovering above a spot between Ben and Vanessa, who are standing on level ground 600 m apart. The angles of elevation as measured by Ben and Vanessa are 35° and 42° respectively. How far is the helicopter from Ben?

Answers:

Chapter 1

1. $x=2, y=-1$
2. $(3,2)$
3. 20

Chapter 2

1. $\sqrt{82}$
2. $\left(\frac{1}{2}, \frac{5}{2}\right)$
3. $x^{2}+y^{2}=20$
4. outside
5. B $(1,-11)$
6. $\mathrm{D}(8,5.5) \&$ Shortest distance $=4.5$

Chapter 5

1. a) $x^{2}+6 x+9$
b) $4 x^{2}-20 x+25$
c) $16 x^{2}+8 x y+y^{2}$
d) $9 x^{2}-4 b^{2}$
2. a) $2 a(2 a+3 b+6 b c)$
b) $(y+4)(x+3)$
3. a) $(x+1)(x-4)$
b) $(2 x-3)(5 x-1)$
c) Not Factorable

Chapter 6

1. a) $y=(x-7)^{2}-29 \rightarrow V(7,-29), A O S-x=7$, Opens up, min
b) $y=-4(x-3)^{2}+33 \rightarrow v(3,33)$, AOS $x+3$, opens down, max
2. a) $x=-5, x=1$
b) $x=-2 / 5, x=-3 / 2$
3. a) 71.65 m
b) 4.6 s
c) 7.8 s
4. 2.02 seconds

Chapter 7

$x \approx 53.8, \quad y \approx 34.6$
$\theta \approx 29^{\circ}, \quad \beta \approx 83^{\circ}$
2. 10 m
3. 27 m
4. 412 m

