Problem Solving

Homework

Solve the following word problems by finding the value of the indicated variable.

a) The formula for finding the volume of a rectangle is V = lwh, where V is volume, l is length, w is width, and h is the height. If the volume of a rectangle is 108 cm³, the length 4 cm, and the width is 3 cm, what is the height of the rectangle?

b) The formula P = 2I + 2w is used to calculate the perimeter, P, of a rectangle. Length is represented by I and w represents the width. If the perimeter of a rectangle is 210 cm, and the length is 20 cm, calculate the width of the rectangle.

- c) Volcanoes and geysers illustrate that Earth's interior is very hot. The formula T = 10d +
 20 is used to estimate the temperature, T degrees Celsius, at a depth of d kilometers.
 - i. Determine the temperature in a mine shaft that is 0.5 km below the surface of the earth.
 - ii. At what depth (d) is the temperature 100°C?

Problem Solving

Solve the following word problems by finding the value of the indicated variable.

a) The formula for finding the volume of a rectangle is V = Iwh, where V is volume, / is length, w is width, and h is the height. If the area of a rectangle is 108 cm³, the length 4 cm, and the width is 3 cm, what is the height of the rectangle?

$$0 \quad \frac{1 \text{ solate } h}{lw} \quad \frac{V = lwh}{lw} \quad \frac{2 \text{ sub in values}}{lw} \quad \frac{V = h}{lw} \quad \frac{108}{(4)(3)} = h \quad \frac{108}{12} = h \quad \frac{108}{12} = h \quad \frac{108}{12} = h \quad \frac{12}{9} = h \quad \frac{12}{9$$

b) The formula P = 2I + 2w is used to calculate the perimeter, P, of a rectangle. Length is represented by I and w represents the width. If the perimeter of a rectangle is 210 cm, and the length is 20 cm, calculate the width of the rectangle.

- c) Volcanoes and geysers illustrate that Earth's interior is very hot. The formula T = 10d + 20 is used to estimate the temperature, T degrees Celsius, at a depth of d kilometers.
 - i. Determine the temperature in a mine shaft that is 0.5 km below the surface of the earth.

C.L T-IAA

ii. At what depth (d) is the temperature 100°C?

	, Isolate d. first	SUD 1=100
i) $T = 10d + 20$	(i) = ind + 2n	T-20 = d
T= 10(.5) +20	Tan Mal	10
T= 5+20	1-20 = 1000	100-20 = d
T= 25	10 10	10
	T-20 = d	80 = d
: temperature is	10	10
25°C.		8=d
	. dept	this BKM.

Problem Solving