Problem Solving

Homework

Solve the following word problems by finding the value of the indicated variable.
a) The formula for finding the volume of a rectangle is $V=I w h$, where V is volume, l is length, w is width, and h is the height. If the volume of a rectangle is $108 \mathrm{~cm}^{3}$, the length 4 cm , and the width is 3 cm , what is the height of the rectangle?
b) The formula $\boldsymbol{P}=\mathbf{2 l}+\mathbf{2 w}$ is used to calculate the perimeter, P, of a rectangle. Length is represented by I and w represents the width. If the perimeter of a rectangle is 210 cm , and the length is 20 cm , calculate the width of the rectangle.
c) Volcanoes and geysers illustrate that Earth's interior is very hot. The formula $\boldsymbol{T}=\mathbf{1 0 d +}$ $\mathbf{2 0}$ is used to estimate the temperature, \boldsymbol{T} degrees Celsius, at a depth of \boldsymbol{d} kilometers.
i. Determine the temperature in a mine shaft that is 0.5 km below the surface of the earth.
ii. At what depth (d) is the temperature $100^{\circ} \mathrm{C}$?

Problem Solving

Solve the following word problems by finding the value of the indicated variable.
a) The formula for finding the volume of a rectangle is $V=/ w h$, where V is volume, l is length, w is width, and h is the height. If the volume a of rectangle is $108 \mathrm{~cm}^{3}$, the length 4 cm , and the width is 3 cm , what is the height of the rectangle?

$$
\begin{array}{ll}
\frac{V}{l w}=\frac{l \omega h}{\ell \omega} & \text { (2) Sub in values }-
\end{array} \begin{aligned}
& \frac{V}{l \omega}=h \\
& \frac{V}{l \omega}=h
\end{aligned} \frac{\frac{108}{(4)(3)}=h}{} \begin{aligned}
& \frac{108}{12}=h \\
& 9=h
\end{aligned}
$$

\therefore height is
b) The formula $\mathbf{P}=\mathbf{2 l + \mathbf { 2 w }}$ is used to calculate the perimeter, P, of a rectangle. Length is represented by I and w represents the width. If the perimeter of a rectangle is 210 cm , and the length is 20 cm , calculate the width of the rectangle.
(1) Isolate $w \quad P=2 l+2 w$

$$
\begin{aligned}
& \frac{P-2 l}{2}=\frac{2 w}{2} \\
& \frac{P-2 l}{2}=\omega
\end{aligned}
$$

$$
\begin{aligned}
(2) \text { Sub in values } \cdot \frac{P-2 l}{2} & =w \\
\frac{210-2(20)}{2} & =w \\
\frac{210-40}{2} & =w \\
\frac{170}{2} & =w \\
\text { width is } 85 \mathrm{~cm} . \quad \begin{array}{l}
85
\end{array} & =w
\end{aligned}
$$

c) Volcanoes and geysers illustrate that Earth's interior is very hot. The formula $\boldsymbol{T}=\mathbf{1 0 d}+\mathbf{2 0}$ is used to estimate the temperature, \boldsymbol{T} degrees Celsius, at a depth of \boldsymbol{d} kilometers.
i. Determine the temperature in a mine shaft that is 0.5 km below the surface of the earth.

$$
\begin{aligned}
& \text { ii. At what depth (d) is the temperature } 100^{\circ} \mathrm{C} \text { ? } \\
& \text { i) } T=10 d+20 \\
& T=10(.5)+20 \\
& T=5+20 \\
& T=25 \\
& \therefore \text { temperature is } \\
& 25^{\circ} \mathrm{C} \text {. }
\end{aligned}
$$

Problem Solving

