When we don't have a right angle triangle and we need to find angles or sides we can use:
The Sine Law
$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} \quad$ To solve for angle
or
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ \& To solve for side
These ratios can be used to find unknown sides or angles in oblique triangles.
Ex. 1 Solve for the unknown.

$$
x \doteq 20.7 \mathrm{~cm}
$$

$$
\text { (1) } \begin{aligned}
\theta & =180-102-43 \\
& =35^{\circ}
\end{aligned}
$$

(2)

$$
\begin{aligned}
\frac{x}{\sin 43^{\circ}} & =\frac{14}{\sin 35^{\circ}} \\
x & =\frac{14}{\sin 35^{\circ}}\left(\sin 43^{\circ}\right) \\
& =16.6
\end{aligned}
$$

c)

$$
\begin{aligned}
& \frac{\sin \theta}{15}=\frac{\sin 50^{\circ}}{17} \\
& \begin{aligned}
\sin \theta & =15 \cdot \frac{\sin 50^{\circ}}{17} \\
\theta & =\sin ^{-1}\left(15 \cdot \frac{\sin 50^{\circ}}{17}\right) \\
& =42.5^{\circ}
\end{aligned}
\end{aligned}
$$

d)

$$
\left.\begin{array}{rl}
\frac{\sin \theta}{9} & =\frac{\sin 42}{7} \\
\sin \theta & =9 \cdot \frac{\sin 42}{7} \\
\theta & =\sin ^{-1}\left(9 \cdot \frac{\sin 42}{7}\right) \\
\theta & =59.4^{\circ}
\end{array}\right\} \begin{aligned}
\sin \theta & \theta=0.86031 \\
\theta & =\sin ^{-1}(0.86031 \\
\theta & \theta=59.4
\end{aligned}
$$

We need to find an angle,

$$
\therefore \text { use: } \frac{\sin A}{a}=\frac{\sin B}{b}
$$

