Finding the zeros of $y = ax^2 + bx + c$ is the same as solving the equation $ax^2 + bx + c = 0$

To Solve a Quadratic Equation:

- write in the form ax2 + bx + c = 0
- fully factor
- determine the value of x that makes each factor equal to zero

Ex. 1 Solve.

a)
$$(x-5)(2x+3)=0$$

$$\downarrow \qquad \qquad \downarrow$$

$$x=5 \qquad 2x+3=0$$

$$2x=-3$$

$$x=\frac{3}{2}$$

b)
$$x(3x-5)=0$$

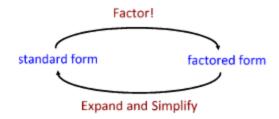
 $x=0$ $3x-5=0$
 $3x=5$
 $x=\frac{5}{3}$

c)
$$x^{2} + 4x - 5 = 0$$

 $(x+5)(x-1) = 0$
 $(x+5)(x-1) = 0$
 $(x+5)(x-1) = 0$
 $(x+5)(x-1) = 0$

d)
$$x^{2}-7x+12=0$$

 $(x-3)(x-4)=0$
 $x=3$ $x=4$

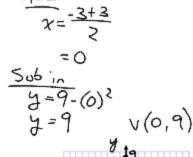

e)
$$2x^{2} + 5x - 3 = 0$$

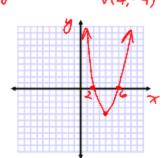
M $-((2x-1)x+3) = 0$
A 5
 $2x-1=0$
 $x=-\frac{1}{2}$
N $\frac{10x}{15}$
 $\frac{2x}{15}$
 $\frac{x}{3}$
F) $10x^{2} + 19x + 6 = 0$
 $(5x+2)(2x+3) = 0$
M 60
A 19
 $5y+2=0$
N $\frac{10x}{15}$
 $\frac{5x}{2}$
 $\frac{2x}{3}$
 $\frac{5x}{2}$
 $\frac{2x}{3}$
 $\frac{5x}{2}$
 $\frac{2x}{3}$
 $\frac{3}{2}$
 $\frac{5}{2}$
 $\frac{3}{2}$
 $\frac{3}{2}$
 $\frac{5}{2}$
 $\frac{3}{2}$
 $\frac{5}{2}$
 $\frac{3}{2}$
 $\frac{3}{2}$
 $\frac{5}{2}$
 $\frac{3}{2}$
 $\frac{3}{2}$
 $\frac{5}{2}$
 $\frac{3}{2}$
 $\frac{3}{2}$

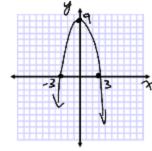
- 1) Determine the vertex by completing the square. $y = 0.2x^2 10x + 63$
- 2) Determine the x-intercepts and the vertex for the following. $y = x^2 + 4x 45$
- 3) Solve. $0 = 2x^2 8x$
- ② $y = x^2 + 4x 45$ y = (x+9)(x-5)y = (x+9)(x-5)

AOS

$$x = -\frac{9+5}{2}$$
 | Sub in to solve for y
 $y = (-2)^2 - 4(-2) - 45$
 $y = 4 - 8 - 45$
 $y = -49$
.: Vertex $(-2, -49)$
 $x - ints$ are : -9,5


5.4 Graphing from Factored Form




Ex. 1 Determine the x-intercepts and vertex, then sketch.

a)
$$y=x^2-8x+12$$

 $y=(x-2)(x-6)$
 $y=(x-2)(x-6)$

b)
$$y=9-x^{2}$$

 $y=-x^{2}+9$
 $y=-(x^{2}-9)$
 $y=-(x-3)(x+3)$

