1.4 Solving Systems by Substitution

Recall: Solving a system of equations means...
Finding the point of intersection of the lines.

It is the only point where both lines have the same x-value and y-value.

Drawbacks of solving by graphing...

- not always accurate
- time consuming

What's so great about solving algebraically?

- gives exact values - less time / less space

Ex. 1 Rogers charges $\$ 35 /$ month plus $\$ 10$ for every extra Gb. Bell charges $\$ 40 /$ month plus $\$ 8$ for every extra Gb. When are they the same price? Solve without graphing.

Ex. 2 How would you solve

$$
\begin{aligned}
\text { (1) } & x \\
\text { (2) } & =5 \\
3 x-4 y & =3
\end{aligned}
$$

$$
\begin{array}{r}
\text { Sub (1) into (2) } \\
3(5)-4 y=3 \\
15-4 y=3
\end{array}
$$

$$
-4 y=-12
$$

$$
y=3
$$

$$
\therefore \text { The } S_{d}{ }^{n} \text { is }(5,3)
$$

$$
\begin{aligned}
& \text { Let } C \text { be the cost in dollars } \\
& \text { Let } g \text { be the \# of } G B \\
& \begin{array}{l}
1(1) C_{R}=10 g+35 \\
{ }^{(2)} C_{B}=8 g+40
\end{array} \\
& \text { WANT TO FIND WHEN } \begin{array}{c}
\text { 看 } \\
\substack{0}
\end{array} \\
& \text { they are the same! } \\
& 10 g+35=8 g+40 \quad C_{R}=C_{B} \\
& 10 g-8 g=40-35 \\
& 2 g=5 \quad \Rightarrow \text { Sub } g=\frac{5}{2} \text { into (1) } \\
& g=\frac{5}{2} \quad C=50\left(\frac{5}{x}, 1\right)+35 \\
& =25+35 \\
& \begin{aligned}
\therefore \text { The plans are equal } & =25 \\
& =60
\end{aligned} \\
& \text { @ } 160 \text { When using } 2.54 B
\end{aligned}
$$

THE SUBSTITUTION METHOD:

1. Isolate a variable in one equation (pick the best one)
2. Substitute to create an equation with only one variable.
3. Solve the equation.
4. Substitute the solved variable into the equation from \#1 to determine the value of the other variable.
5. Write a conclusion.
6. (Check) - formal if asked, otherwise complete a mental check.

Ex. 3 Solve using the substitution method.
a) $x+3 y=-4$

$$
\begin{equation*}
2 x-3 y=1 \tag{2}
\end{equation*}
$$

(1)

$$
x=-4-3 y
$$

Sub into (2)

$$
\begin{aligned}
2(-4-3 y)-3 y & =1 \\
-8-6 y-3 y & =1 \\
-8-9 y & =1 \\
-9 y & =9 \\
y & =-1
\end{aligned}
$$

sob $y=-1$ into (1)

$$
\begin{aligned}
x+3(-1) & =-4 \\
x-3 & =-4 \\
x & =-1
\end{aligned}
$$

\therefore Soln is

$$
(-1,-1)
$$

b)

$$
\begin{array}{cl}
5 a+3 b=10 \\
2 a-b=4 & \text { (1) } \tag{2}\\
2 a-4=b \quad b=2 a-4
\end{array}
$$

Sub (2) into (1)

$$
\begin{aligned}
5 a+3(2 a-4) & =10 \\
5 a+6 a-12 & =10 \\
11 a & =22 \\
a & =2
\end{aligned}
$$

Sub $a=2$ back into 2

$$
\begin{array}{r}
2(2)-b=4 \\
4-b=4 \\
-b=0 \\
b=0
\end{array}
$$

\therefore Sol is $\begin{aligned} & a=2, \\ & b=0\end{aligned}$
A.

$$
\begin{align*}
x+y & =8 \\
3 x+3 y & =-5 \tag{2}
\end{align*}
$$

(1) $x=8-y$

Subinto (2)

$$
\begin{aligned}
3(8-y)+3 y & =-5 \\
24-3 y+3 y & =-5 \\
24 & =-5
\end{aligned}
$$

B. $p-2 q=-3$ (1)

$$
4 q=2 p+6(2)
$$

(1) $p=-3+2 q$

Sub into (2)

$$
\begin{aligned}
& 4 q=2(-3+2 q)+6 \\
& 4 q=-6+4 q+6 \\
& 4 q=4 q \\
& \text { (OR) } \\
& 0=0 \\
& \therefore \text { AlWays TRUE } \rightarrow \text { MANY SOLUTIONS } \\
& \text { (SAME LINE) }
\end{aligned}
$$

Working with fractions...
pg. 26 \#4a)
(1) $x+2 y=3$
(2) $5 x+4 y=8$

\therefore The soln is $\left(\frac{2}{3}, \frac{7}{6}\right)$

The following three lines all intersect at one point. Find the coordinates of the point of intersection and the value of k.

$$
\begin{aligned}
2 x+3 y & =7 \\
x+4 y & =16 \\
4 x-k y & =9
\end{aligned}
$$

Your Turn p. 26 \#4bd, 5ace, 12, 19

